MitoK(ATP) opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat.

نویسندگان

  • Katsuyoshi Shimizu
  • Zsombor Lacza
  • Nishadi Rajapakse
  • Takashi Horiguchi
  • James Snipes
  • David W Busija
چکیده

We investigated effects of diazoxide, a selective opener of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels, against brain damage after middle cerebral artery occlusion (MCAO) in male Wistar rats. Diazoxide (0.4 or 2 mM in 30 microl saline) or saline (sham) was infused into the right lateral ventricle 15 min before MCAO. Neurological score was improved 24 h later in the animals treated with 2 mM diazoxide (13.8 +/- 0.7, n = 13) compared with sham treatment (9.5 +/- 0.2, n = 6, P < 0.01). The total percent infarct volume (MCAO vs. contralateral side) of sham treatment animals was 43.6 +/- 3.6% (n = 12). Treatment with 2 mM diazoxide reduced the infarct volume to 20.9 +/- 4.8% (n = 13, P < 0.05). Effects of diazoxide were prominent in the cerebral cortex. The protective effect of diazoxide was completely prevented by the pretreatment with 5-hydroxydecanoate (100 mM in 10 microl saline), a selective blocker of mitoK(ATP) channels (n = 6). These results indicate that selective opening of the mitoK(ATP) channel has neuroprotective effects against ischemia-reperfusion injury in the rat brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mitochondrial K(ATP) channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats.

Activation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels protects the brain against ischemic or chemical challenge. Unfortunately, the prototype mitoK(ATP) channel opener, diazoxide, has mitoK(ATP) channel-independent actions. We examined the effects of BMS-191095, a novel selective mitoK(ATP) channel opener, on transient ischemia induced by middle cerebral artery occlusion (MC...

متن کامل

Neuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population

Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...

متن کامل

Mitochondrial potassium channel opener diazoxide preserves neuronal-vascular function after cerebral ischemia in newborn pigs.

BACKGROUND AND PURPOSE N-Methyl-D-aspartate (NMDA) elicits neuronally mediated cerebral arteriolar vasodilation that is reduced by ischemia/reperfusion (I/R). This sequence has been preserved by pretreatment with the ATP-sensitive potassium (K(ATP)) channel opener aprikalim, although the mechanism was unclear. In the heart, mitochondrial K(ATP) channels (mitoK(ATP)) are involved in the ischemic...

متن کامل

Protective effect of delayed remote limb ischemic postconditioning: role of mitochondrial KATP channels in a rat model of focal cerebral ischemic reperfusion injury

Delayed remote ischemic postconditioning (DRIPost) has been shown to protect the rat brain from ischemic injury. However, extremely short therapeutic time windows hinder its translational use and the mechanism of action remains elusive. Because opening of the mitochondria K(ATP) channel is crucial for cell apoptosis, we hypothesized that the neuroprotective effect of DRIPost may be associated w...

متن کامل

The Effect of Diazoxide on Ultrastructural Changes Following Ischemia-Reperfusion Injury of Rat Brain

A B S T R A C T Introduction: Even today there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied the effect of mitochondrial KATP channel regulators on neuronal ultrastructure after ischemia reperfusion in the rat. Materials & Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusion with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 283 3  شماره 

صفحات  -

تاریخ انتشار 2002